Search the web

LHC@home


LHC@home Logo

LHC@home is a volunteer distributed computing project that needs your help to advance Particle and Accelerator Physics.

Wikipedia page

LHC@home

Goal

* Help build and maintain The Large Hadron Collider

* Enable physicists to compare theory with experiment, in the search for new fundamental particles and provide answers to questions about the Universe.

Methods

* The classic LHC@home application Sixtrack, are simulations of accelerator physics, and help researchers at CERN to build and improve the LHC.

Other LHC@home simulations that utilize virtualization to run applications for Theory and experiment simulations

* ATLAS

* CMS

* LHCb

* Test4Theory

Project team / Sponsors

CERN

Scientific publications

Source: https://boinc.berkeley.edu/pubs.php#LHC@home 

LHC@home (ATLAS@home)

  1. Elmsheuser, Johannes, Alessandro Di Girolamo, Andrej Filipcic, Antonio Limosani, Markus Schulz, David Smith, Andrea Sciaba and Andrea Valassi. ATLAS Grid Workflow Performance Optimization. EPJ Web of Conferences (2019). DOI: 10.1051/epjconf/201921403021.

  2. Wu, Wenjing and David Cameron. Backfilling the Grid with Containerized BOINC in the ATLAS computing. EPJ Web of Conferences (2019). DOI: 10.1051/epjconf/201921407015.

  3. Wu, Wenjing, David Cameron and Di Qing. Using ATLAS@Home to Exploit Extra CPU from Busy Grid Sites. Computing and Software for Big Science (2019). DOI: 10.1007/s41781-019-0023-6.

  4. Cameron, David, Alexander Bogdanchikov, Riccardo-Maria Bianchi and Wenjing Wu. Advances in ATLAS@Home towards a major ATLAS computing resource. (2018).

  5. Furano, Fabrizio, Oliver Keeble and Laurence Field. Dynamic federation of grid and cloud storage. Physics of Particles and Nuclei Letters (2016). DOI: 10.1134/S1547477116050186.

  6. Alonso-Monsalve, Saúl, Félix García-Carballeira and Alejandro Calderón. Improving the Performance of Volunteer Computing with Data Volunteers: A Case Study with the ATLAS@home Project. Algorithms and Architectures for Parallel Processing (2016).

  7. Tomás, R., M. Giovannozzi and R. de Maria. Nonlinear correction schemes for the phase 1 LHC insertion region upgrade and dynamic aperture studies. Physical Review Special Topics - Accelerators and Beams (2009). DOI: 10.1103/PhysRevSTAB.12.011002.

LHC@home (CMS@Home)

  1. Pérez-Calero Yzquierdo, Antonio, Maria Acosta Flechas, Diego Davila Foyo et alEvolution of the CMS Global Submission Infrastructure for the HL-LHC Era. EPJ Web of Conferences (2020). DOI: 10.1051/epjconf/202024503016.

  2. Dykstra, Dave, Brian Bockelman, Jakob Blomer and Laurence Field. The Open High Throughput Computing Content Delivery Network. EPJ Web of Conferences (2019). DOI: 10.1051/epjconf/201921404023.

  3. Field, L., D. Spiga, I. Reid, H. Riahi and L. Cristella. CMS@home: Integrating the Volunteer Cloud and High-Throughput Computing. Computing and Software for Big Science (2018). DOI: 10.1007/s41781-018-0006-z.

  4. Cheung, Kwong Tat, Laurence Field and Fabrizio Furano. A world-wide databridge supported by a commercial cloud provider. Journal of Physics: Conference Series (2017). DOI: 10.1088/1742-6596/898/6/062041.

  5. Berzano, D, J Blomer, P Buncic, I Charalampidis, G Ganis and R Meusel. Status and Roadmap of CernVM. Journal of Physics: Conference Series (2015). DOI: 10.1088/1742-6596/664/2/022018.

  6. Field, L, H Borras, D Spiga and H Riahi. CMS@home: Enabling Volunteer Computing Usage for CMS. Journal of Physics: Conference Series (2015). DOI: 10.1088/1742-6596/664/2/022017.

LHC@home (SixTrack)

  1. Cameron, David, Laurence Field, Frederik Van Der Veken et alAll grown-up; 18 years of LHC@home. EPJ Web of Conferences (2024). DOI: 10.1051/epjconf/202429504004.

  2. D'Andrea, Marco, Alessio Mereghetti, Daniele Mirarchi, Veronica Olsen and Stefano Redaelli. Release of Crystal Routine for Multi-Turn Proton Simulations within SixTrack v5. 12th International Particle Accelerator Conference (IPAC'21), Campinas, SP, Brazil, 24-28 May 2021 (2021). DOI: 10.18429/JACoW-IPAC2021-WEPAB024.

  3. De Maria, Riccardo, Joel Andersson, Laurence Field et alSixTrack Project: Status, Runtime Environment, and New Developments. Proceedings of the 13th Int. Computational Accelerator Physics Conf. (2019). DOI: 10.18429/JACOW-ICAP2018-TUPAF02.

  4. De Maria, R., J. Andersson, V. K. Berglyd Olsen et alSixTrack V and runtime environment. International Journal of Modern Physics A (2019). DOI: 10.1142/S0217751X19420351.

  5. De Maria, Riccardo, Nils Hoimyr, Joel Andersson et alJACoW : SixTrack project: Status, runtime environment, and new developments. (2019). DOI: DOI: 10.18429/JACoW-ICAP2018-TUPAF02.

  6. Maclean, E. H., M. Giovannozzi and R. B. Appleby. Innovative method to measure the extent of the stable phase-space region of proton synchrotrons. Physical Review Accelerators and Beams (2019). DOI: 10.1103/PhysRevAccelBeams.22.034002.

  7. De Maria, R., J. Andersson, V.K. Berglyd Olsen et alSixTrack Version 5: Status and New Developments. Journal of Physics: Conference Series (2019). DOI: 10.1088/1742-6596/1350/1/012129.

  8. Kaltchev, Dobrin, Nikolaos Karastathis, Yannis Papaphilippou and Dario Pellegrini. Extended-Domain Tune-Scans for the HL-LHC Dynamic Aperture in Presence of Beam-Beam Effects. Proceedings of the 9th Int. Particle Accelerator Conf. (2018). DOI: 10.18429/JACOW-IPAC2018-TUPAL064.

  9. Kaltchev, Dobrin, Nikolaos Karastathis, Dario Pellegrini, E. McIntosh and Yannis Papaphilippou. JACoW : Extended-Domain Tune-Scans for the HL-LHC Dynamic Aperture in Presence of Beam-Beam Effects. (2018). DOI: 10.18429/JACoW-IPAC2018-TUPAL064.

  10. Sjobak, Kyrre, Javier Barranco García, Riccardo De Maria, Miriam Fitterer, Vikas Gupta, Eric McIntosh, Alessio Mereghetti and James Molson. New Features of the 2017 SixTrack Release. Proceedings of the 8th Int. Particle Accelerator Conf. (2017). DOI: 10.18429/JACOW-IPAC2017-THPAB047.

  11. Høimyr, N, J Blomer, P Buncic et alBOINC service for volunteer cloud computing. Journal of Physics: Conference Series (2012). DOI: 10.1088/1742-6596/396/3/032057.

  12. Harutyunyan, A, J Blomer, P Buncic et alCernVM Co-Pilot: an Extensible Framework for Building Scalable Computing Infrastructures on the Cloud. Journal of Physics: Conference Series (2012). DOI: 10.1088/1742-6596/396/3/032054.

  13. E. McIntosh,, F. Schmidt and F. d. Dinechin. Massive Tracking on Heterogeneous Platforms. 9th International Computational Accelerator Physics Conference, 2006 (2006).

  14. Herr, Werner, D Kaltchev, E McIntosh and F Schmidt. Large Scale Beam-beam Simulations for the CERN LHC using Distributed Computing. 10th European Particle Accelerator Conference (2006).

LHC@home (Test4Theory)

  1. Jueid, Adil. Studying QCD modeling of uncertainties in particle spectra from dark-matter annihilation into jets. Journal of Physics: Conference Series (2021). DOI: 10.1088/1742-6596/2156/1/012057.

  2. Jueid, Adil, Simone Amoroso, Sascha Caron, Peter Skands and Roberto Ruiz de austri. Particle spectra from dark matter annihilation: physics modelling and QCD uncertainties. Tools for High Energy Physics and Cosmology (2021). DOI: 10.22323/1.392.0028.

  3. d'Enterria, David and Cynthia Yan. Revised QCD effects on the Z $\to b\bar{b}$ forward-backward asymmetry. (2020).

  4. Hunt-Smith, Nicholas and Peter Skands. String fragmentation with a time-dependent tension. The European Physical Journal C (2020). DOI: 10.1140/epjc/s10052-020-08654-9.

  5. Bierlich, Christian, Andy Buckley, Christian Holm Christensen et alConfronting experimental data with heavy-ion models: Rivet for heavy ions. The European Physical Journal C (2020). DOI: 10.1140/epjc/s10052-020-8033-4.

  6. Duncan, Cody B and Peter Skands. Fragmentation of two repelling Lund strings. SciPost Physics (2020). DOI: 10.21468/SciPostPhys.8.5.080.
  7. Soyez, Grégory. Pileup mitigation at the LHC: A theorist’s view. Physics Reports (2019). DOI: 10.1016/j.physrep.2019.01.007.

  8. Cameron, David, Laurence Field, Nikolas Giannakis and Nils Høimyr. Extending CERN computing to volunteers - LHC@home consolidation and outlook. EPJ Web of Conferences (2019). DOI: 10.1051/epjconf/201921403016.

  9. The FCC Collaboration, A. Abada, M. Abbrescia et alFCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. The European Physical Journal C (2019). DOI: 10.1140/epjc/s10052-019-6904-3.

  10. Acharya, S., D. Adamová, A. Adler et alCharged jet cross section and fragmentation in proton-proton collisions at s = 7 TeV. Physical Review D (2019). DOI: 10.1103/PhysRevD.99.012016.

  11. Bartalini, Paolo and Jonathan Richard Gaunt. Multiple Parton Interactions at the LHC. Advanced Series on Directions in High Energy Physics (2018).

  12. Corcella, Gennaro, Roberto Franceschini and Doojin Kim. Fragmentation uncertainties in hadronic observables for top-quark mass measurements. Nuclear Physics B (2018). DOI: 10.1016/j.nuclphysb.2018.02.012.

  13. Grosse-Oetringhaus, Jan Fiete. Phenomenology of Soft QCD: The Role of Minimum-Bias Measurements. Advanced Series on Directions in High Energy Physics (2018).

  14. Adam, J., L. Adamczyk, J. R. Adams et alLongitudinal double-spin asymmetries for Ï€ 0 s in the forward direction for 510 GeV polarized p p collisions. Physical Review D (2018). DOI: 10.1103/PhysRevD.98.032013.

  15. Tanabashi, M., K. Hagiwara, K. Hikasa et alReview of Particle Physics. Physical Review D (2018). DOI: 10.1103/PhysRevD.98.030001.

  16. Sjöstrand, Torbjörn. The Development of MPI Modeling in Pythia. Advanced Series on Directions in High Energy Physics (2018).

  17. Skands, Peter and David d’Enterria. QCD studies at FCC-ee. 38th International Conference on High Energy Physics (2017). DOI: 10.22323/1.282.1156.

  18. Barranco, Javier, Yunhai Cai, David Cameron et alLHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN. Open Engineering (2017). DOI: 10.1515/eng-2017-0042.

  19. Mangano Et Al., M. L. Chapter 1: Standard Model Processes. CERN Yellow Reports: Monographs (2017). DOI: 10.23731/CYRM-2017-003.1.

  20. Gras, Philippe, Stefan Höche, Deepak Kar et alSystematics of quark/gluon tagging. Journal of High Energy Physics (2017). DOI: 10.1007/JHEP07(2017)091.

  21. Richardson, Peter. Parton Showers since LEP. (2017).

  22. Akiba, K, M Akbiyik, M Albrow et alLHC forward physics. Journal of Physics G: Nuclear and Particle Physics (2016). DOI: 10.1088/0954-3899/43/11/110201.

  23. Martin, T., P. Skands and S. Farrington. Probing collective effects in hadronisation with the extremes of the underlying event. The European Physical Journal C (2016). DOI: 10.1140/epjc/s10052-016-4135-4.

  24. Fox, Patrick J. and David Tucker-Smith. Exotic decays of heavy B quarks. Journal of High Energy Physics (2016). DOI: 10.1007/JHEP01(2016)038.

  25. Sjöstrand, Torbjörn, Stefan Ask, Jesper R. Christiansen et alAn introduction to PYTHIA 8.2. Computer Physics Communications (2015). DOI: 10.1016/j.cpc.2015.01.024.

  26. Grebenyuk, A., D. Kar and A. Siodmok. Outlook on MPI and MC models. (2015).

  27. Astalos, R. and others. Proceedings of the Sixth International Workshop on Multiple Partonic Interactions at the Large Hadron Collider. (2015).

  28. Heß, Benjamin Andreas. Particle Identification in Jets and High-Multiplicity pp Events with the ALICE TPC. (2015).

  29. Cacciari, Matteo, Gavin P. Salam and Gregory Soyez. SoftKiller, a particle-level pileup removal method. The European Physical Journal C (2015). DOI: 10.1140/epjc/s10052-015-3267-2.

  30. Høimyr, N, M Marquina, T Asp, P Jones, A Gonzalez and L Field. Towards a Production Volunteer Computing Infrastructure for HEP. Journal of Physics: Conference Series (2015). DOI: 10.1088/1742-6596/664/2/022023.

  31. Kalaydzhyan, Tigran and Edward Shuryak. Collective flow in high-multiplicity proton-proton collisions. Physical Review C (2015). DOI: 10.1103/PhysRevC.91.054913.

  32. Bierlich, Christian, Gösta Gustafson, Leif Lönnblad and Andrey Tarasov. Effects of overlapping strings in pp collisions. Journal of High Energy Physics (2015). DOI: 10.1007/JHEP03(2015)148.

  33. Christiansen, Jesper R. and Peter Z. Skands. String formation beyond leading colour. Journal of High Energy Physics (2015). DOI: 10.1007/JHEP08(2015)003.

  34. Seidel, Markus. Precise measurement of the top-quark mass at the CMS experiment using the ideogram method. (2015).

  35. Charalampidis, I., D. Berzano, J. Blomer, P. Buncic, G. Ganis, R. Meusel and B. Segal. CernVM WebAPI - Controlling Virtual Machines from the Web. Journal of Physics: Conference Series (2015). DOI: 10.1088/1742-6596/664/2/022010.

  36. Barletta, William, Marco Battaglia, Markus Klute, Michelangelo Mangano, Soren Prestemon, Lucio Rossi and Peter Skands. Future hadron colliders: From physics perspectives to technology R&D. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2014). DOI: 10.1016/j.nima.2014.07.010.

  37. Skands, P., S. Carrazza and J. Rojo. Tuning PYTHIA 8.1: the Monash 2013 tune. The European Physical Journal C (2014). DOI: 10.1140/epjc/s10052-014-3024-y.

  38. Fischer, N., S. Gieseke, S. Plätzer and P. Skands. Revisiting radiation patterns in $$e^+e^-$$ e + e - collisions. The European Physical Journal C (2014). DOI: 10.1140/epjc/s10052-014-2831-5.

  39. Karneyeu, A., L. Mijovic, S. Prestel and P. Z. Skands. MCPLOTS: a particle physics resource based on volunteer computing. The European Physical Journal C (2014). DOI: 10.1140/epjc/s10052-014-2714-9.

  40. Hartgring, L., E. Laenen and P. Skands. Antenna showers with one-loop matrix elements. Journal of High Energy Physics (2013). DOI: 10.1007/JHEP10(2013)127.

  41. Katzy, Judith M. QCD Monte-Carlo model tunes for the LHC. Progress in Particle and Nuclear Physics (2013). DOI: 10.1016/j.ppnp.2013.08.002.

  42. Sjöstrand, Torbjörn. Colour reconnection and its effects on precise measurements at the LHC. (2013).

  43. Barletta, William, Marco Battaglia, Markus Klute, Michelangelo Mangano, Soren Prestemon, Lucio Rossi and Peter Skands. Working Group Report: Hadron Colliders. (2013).

  44. Skands, Peter Z. Soft-QCD and UE spectra in pp collisions at very high CM energies (a Snowmass white paper). (2013).

Contributing

If you're interested in supporting this project, visit the official website and attach to the project using its official URL: https://lhcathome.cern.ch/lhcathome/.


BOINC Projects Wiki


Leave a Reply

Logged in as admin. Edit your profile. Log out? Required fields are marked *